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I. Supplementary Figures 

 

 
 

Supplementary Figure 1:  Predictions of the NaKL SSN model and VLSI neuron.  

(a) Voltage predicted by the SSN model (red curve) and the VLSI circuit (black curve) in response to a chaotic current 

protocol. Both biased with the VLSI parameter set of Table II.  (b) Data corresponding to a smaller window (black bar, 

panel (a)), and (c) further enlarged to distinguish between the VLSI and SSN model predictions. 
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Supplementary Figure 2:  Solid state ion channel implementing constant recovery time constants.  
Circuit diagram of an ion channel including an activation gate (m) and an inactivation gate (h). The gate recovery time 

constants are given by 𝜏𝛾 =
2𝐶𝛾𝑈𝑇

𝜅𝐼𝜏𝛾
 , 𝛾 ≡ {𝑚, ℎ}. 
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Supplementary Figure 3: Response of a CA1 neuron (left) and completed CA1 model (right) to square current steps.  

Each depolarisation current step was applied for 40ms after a 20ms delay.  This was followed by a constant 

hyperpolarising step of -120pA which was applied between 80ms and 120ms. The amplitudes of the depolarising 

current steps in panels (a), (b) and (c) were 0.09nA, 0.19nA and 0.29nA, respectively. The completed CA1 model was 

forward integrated with the three current protocols to produce the voltage predictions in panels (d)-(f). 
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Supplementary Figure 4: Assimilation and prediction of the membrane voltage oscillations of a CA1 cell. 

The CA1 model incorporates the calcium AHP channel in place of the muscarinic channel. 

 

 

 

 

Supplementary Figure 5:  Circuit of the calcium-dependent potassium current (AHP) - after Rasche and Douglas 

(2000)1. 
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Supplementary Figure 6:  Schematic of the differential transistor pair generating a sigmoidal current.  
The gate voltage of transistor T1 modulates current I1 as it crosses the voltage threshold 𝑉𝑡 set on transistor T2.  

 

 

Supplementary Figure 7:  Schematics of a transconductance amplifier (TCA).   

The TCA combines the differential pair with a current mirror (CM1) to output the current difference (𝐼1 − 𝐼2).   

 

 

Supplementary Figure 8:  Circuit diagram for the leak current.  
This ion channel gives a passive conductance and a residual leak current that changes sign at the reversal 
potential (𝐸𝐿). V is the membrane voltage. 𝐼𝑔𝐿 is the maximum value of the leak current.  
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Supplementary Figure 9:  Activation curve of the A ion channel of a thalamic relay neuron 

The red line shows the activation curve predicted by Eq.8. The cross symbols show the same activation curve 

synthesized by the 9 stage circuit of Fig.2(a) as simulated in Spectre®. 

 

 
 

Supplementary Figure 10:  Voltage dependence of the gate kinetics of HCN inactivation. 
The red line shows the gate kinetics given by Eq.9.  The cross symbols show the same kinetics synthesized by the 9-
stage circuit of Fig.2(c) as simulated in Spectre®. 

 

 

 

 



9 
 

 

 
Supplementary Figure 11:  Patch clamping of respiratory and pyramidal neurons in rat brain slices.  

(a) Slice of the rat brainstem showing the pre-Bötzinger area where the respiratory central pattern generator is 

located.  (b) Suction electrode (red arrow) recording from the XII rootlet whose motor outflow fires in time with 

the respiratory neuron.  Patch pipette targeting the pre-Bötzinger area (blue arrow).  (c) Electrophysiological rig.  

(d) The control panel shows a CCD video of a patched respiratory neuron (top screen).  The lower screen shows 

the current protocol being applied to the respiratory neuron (red trace) and the membrane voltage oscillations 

being recorded (green trace). 
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Supplementary Figure 12:  VLSI circuit.   

(a) VLSI neuron.  The larger areas (cyan) are the capacitances 𝐶, 𝐶𝑚, 𝐶ℎ …  (b) Overall view of the neuromorphic chip. 
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II. Supplementary Tables 

 

Ion channel Parameter ID Value 

 𝐶𝑚(μF. 𝑐𝑚−2) 1 

ISA(𝑐𝑚2) 2.9 × 10−4 

Fast and transient 
Sodium current (NaT) 

𝑔𝑁𝑎𝑇(mS. 𝑐𝑚−2) 69 

𝐸𝑁𝑎(mV) 41 
𝑉𝑡𝑚(mV) -39.92 

𝛿𝑉𝑚(𝑚𝑉−1) 10 

𝑡0𝑚(mS) 0.143 

𝜖𝑚(mS) 1.099 
𝛿𝑉𝜏𝑚(𝑚𝑉−1) 23.39 

𝑉𝑡ℎ(mV) -65.37 

𝛿𝑉ℎ(𝑚𝑉−1) -17.65 
𝑡0ℎ(mS) 0.701 

𝜖ℎ(mS) 12.9 
𝛿𝑉𝜏ℎ(𝑚𝑉−1) 27.22 

Transient 
depolarisation 
activated current (K) 

𝑔𝐾(mS. 𝑐𝑚−2) 6.9 
𝐸𝐾(mV) -100 
𝑉𝑡𝑛(mV) -34.58 

𝛿𝑉𝜏𝑛(𝑚𝑉−1) 23.39 
𝛿𝑉𝑛(𝑚𝑉−1) 22.17 

𝑡0𝑛(mS) 1.291 
𝜖𝑛(mS) 4.314 

Leak current (L) 𝑔𝐿(mS. 𝑐𝑚−2) 0.465 
𝐸𝐿(mV) -65 

 

Supplementary Table 1. Parameters set in the Hodgkin-Huxley conductance model (Eq.11).   

These parameters are taken from a thalamocortical relay neuron2. 

 

III.   Supplementary Notes 

 
 

Supplementary Note 1: Power consumption of the VLSI neurons (SPECTRE calculations) 

 

Neuron type Input current Average power Peak power Firing rate 

Supplementary 

Figure 2 neuron 

1nA 75.6nW 85.5nW 273 Hz 

Resp. neuron 1nA 139nW 187nW 240 Hz 

 

The two neurons are stimulated with 1 nA of DC current.  The peak power corresponds to the maximum 

current the circuit draws as the neuron is firing.  The average power is calculated from the average current 

drawn over a time window of 100ms. 
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The average power per spike for each neuron is given below.  This is compared to a 180 nm integrate-and-

fire neuron (Nair, Indiveri, ISCAS 2019). 

 

Neuron type Energy per spike 

Supplementary Figure 2 neuron 276 pJ per spike 

Resp. neuron 579 pJ per spike 

180nm Integrate-and-Fire 10 pJ per spike 

  

 

Supplementary Note 2: Solid state neuron variants 

A. Voltage dependent gate recovery times 

We found that SSN models often give excellent predictions of biological neuron dynamics if constant gate 

recovery times are used.  Supplementary Figure 2 shows a variant of the ionic channel of Fig.1 incorporating 

voltage-independent gate recovery times.  

 

B. Rasche-Douglas variant implementing activation curves with transconductance amplifiers 

An implementation of sigmoidal activation by transconductance amplifiers (Eq.S16) has been proposed by 

Rasche and Douglas (2000)1 as an alternative to differential pairs (Eq.S12)5.  We find that this approach is 

far less amenable to building quantitative neuron models for two reasons.  Unlike the differential pair which 

outputs a positive current (Eq.S12), the current output by the TCA can have either sign (Eq.S16).  For this 

reason, TCAs require an extra current mirror placed in output of the TCA to limit the current to positive 

values.  The current mirror introduces a Heaviside function 𝜃(𝑥) which modifies the SSN model equations 

as follows: 

 

 

𝐶
𝑑𝑉

𝑑𝑡
 =  𝐼𝑔𝐿 tanh 𝛽𝐿 (𝐸𝐿 − 𝑉) + 𝛼𝐼𝑖𝑛𝑗 + 𝐼𝑑𝑎𝑟𝑘 

 
   + {𝐼𝑔𝑚 tanh 𝛽𝑚 (𝑉 − 𝑉𝑡𝑚) 

 
        −𝐼𝑔ℎ tanh 𝛽ℎ (𝑉ℎ − 𝑉𝑡ℎ)𝜃(𝑉ℎ − 𝑉𝑡ℎ)}𝜃(𝐼𝑚 − 𝐼ℎ) 

 
    −𝐼𝑔𝑛 tanh 𝛽𝑛 (𝑉𝑛 − 𝑉𝑡𝑛)𝜃(𝑉𝑛 − 𝑉𝑡𝑛)                      (S1) 

 

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
 =  𝐼𝜏𝑚 tanh 𝛽 (𝑉 − 𝑉𝑚)                                       

 

𝐶ℎ
𝑑𝑉ℎ

𝑑𝑡
 =  𝐼𝜏ℎ tanh 𝛽 (𝑉 − 𝑉ℎ)                                        

 

𝐶𝑛
𝑑𝑉𝑛

𝑑𝑡
 =  𝐼𝜏𝑛 𝑡𝑎𝑛ℎ 𝛽 (𝑉 − 𝑉𝑛)                                    

 

 

The drawbacks of the Rasche-Douglas approach are thus as follows: 
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 the extra Heaviside functions 𝜃(𝑉ℎ − 𝑉𝑡ℎ) and 𝜃(𝑉𝑛 − 𝑉𝑡𝑛) in Eq.S1 do not meet the criterion of 

doubly differentiability required by data assimilation.  Data assimilation fails.  
 the extra Heaviside functions truncate the (in)activation curves below the (in)activation threshold.  

Therefore these do not accurately represent biological activation curves. 
 

The SSN model (Eq.10 / Fig.1) is therefore better than Eq.S1 for predicting biological neuron oscillations. 

 

Supplementary Note 3: Adaptation of the CA1 neuron model to current steps 

In Supplementary Figure 3, the model predictions (right-hand side) demonstrate the spike frequency 

adaptation and latency (delay without spiking) of the CA1 neuron to current steps.  The same adaptation and 

latency is observed in CA1 membrane voltage recordings (left-hand side).  The model is consistent with the 

behaviour of CA1 neurons reported by McKiernan and Marrone (2007)6. 

Note that membrane voltage oscillations recorded in response to current steps are known to vary from one 

epoch to the next where the same current step is injected.  The poor reliability is ascribed to stochastic 

resonance 7 and random oscillations of the membrane potential8.  The need for reliable patch-clamp recordings 

to test model predictions is a first reason why we use complex current protocols to validate the predictions of 

completed models.  The second reason is that tonic current injection is insufficient to demonstrate the full 

dynamic range of the model. 

 

Supplementary Note 4: Does the soma of CA1 neuron incorporate calcium channels? 

Calcium channels are predominantly located in dendrites.  In order to determine whether calcium channels 

are present in sufficient numbers in the soma to affect its dynamics, we have assimilated the CA1 data of 

Fig.5 with a model using the AHP calcium activated potassium channel (Supplementary Figure 5) instead of 

the muscarinic ion channel.  The results, shown in Supplementary Figure 4, indicate that although the fits are 

acceptable (panel a), the extracted parameters take meaningless values with the effect that the predicted 

membrane voltage misses several action potentials (panels b,c) and the dynamics of gate variables (panels d-

f) is wrong.  Therefore we can say with a degree of confidence that if Ca channels are present in the soma, 

their effect on electrical properties is a second order effect. 

 

Bursting vs. non-bursting neurons in the respiratory central pattern generator 

 

The respiratory network has state-dependent modes of operation. These are: eupnoea (normal breathing), 

apneusis (prolonged inspiration) and gasping. These states reflect reconfigurations of the respiratory network 

from 3- to 2- to 1-phase neuronal oscillations, respectively. Only in gasping mode is the intrinsic burster 

neuron deployed9. This, however, is irrelevant to our network because our respiratory oscillator requires the 

3-phase eupneic network in order to drive the various motor outflows we are studying; one of which is the 

post-inspiratory control of the vagus nerve to the heart to mediate respiratory sinus arrhythmia. The 3-phase 

oscillator is driven by different neurones that generate rhythm through reciprocal inhibitory synaptic 

connections, not intrinsic bursting properties10. 
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Supplementary Note 5: First principle analysis of silicon neuron circuits 

 

A. Equations of the differential pair  

 

In Supplementary Figure 6, the drain current (𝐼𝐷) of a sub-threshold MOSFET increases exponentially with 

the gate bias (𝑉𝑔) applied relative to the source (𝑉𝑠)3,4.  At saturation (𝑉𝑑𝑠 > 4𝑈𝑇) one has: 

𝐼𝐷 = 𝐼0  𝑒𝑥𝑝 (
𝜅𝑉𝑔 − 𝑉𝑠

𝑈𝑇
 ) , 

 

 (S2) 

 

where 𝑈𝑇 ≈ 25 𝑚𝑉 and 𝜅 ≈ 0.7 is the sub-threshold slope factor set by the technology: 𝜅 =  𝐶𝑂𝑋/(𝐶𝑂𝑋 +

𝐶𝐷), where 𝐶𝑂𝑋 is the capacitance of the oxide layer of a MOSFET and 𝐶𝐷 is the capacitance of the depletion 

layer.  Using Eq.S2 in the differential pair in Supplementary Figure 6 gives:  

𝐼1 = 𝐼0  𝑒𝑥𝑝 (
𝜅𝑉 − 𝑉𝑠

𝑈𝑇
 ), 

 

𝐼2 = 𝐼0  𝑒𝑥𝑝 (
𝜅𝑉𝑡 − 𝑉𝑠

𝑈𝑇
 ). 

(S3) 

 

 

 

(S4) 

 

The drain current in the current source transistor (T3) is:  

 

𝐼𝑚𝑎𝑥 = 𝐼1 + 𝐼2 
 

= 𝐼0   𝑒𝑥𝑝 (
𝜅𝑉 − 𝑉𝑠

𝑈𝑇
 ) + 𝐼0  𝑒𝑥𝑝 (

𝜅𝑉𝑡 − 𝑉𝑠

𝑈𝑇
 )    

 

     = 𝐼0 𝑒𝑥𝑝 (
−𝑉𝑠

𝑈𝑇
 ) [𝑒𝑥𝑝 (

𝜅𝑉

𝑈𝑇
 ) + 𝑒𝑥𝑝 (

𝜅𝑉𝑡

𝑈𝑇
 )] .    

 

 

   

 

 

 

 

 

 

(S5) 

 

from which one obtains the common source voltage Vs as a function of 𝐼𝑚𝑎𝑥 as: 

  𝑒𝑥𝑝 (
−𝑉𝑠

𝑈𝑇
 ) =

𝐼𝑚𝑎𝑥

𝐼0  [𝑒𝑥𝑝 (
𝜅𝑉
𝑈𝑇

 ) + 𝑒𝑥𝑝 (
𝜅𝑉𝑡

𝑈𝑇
 )]

  , 

 

Substituting Eq. S6 into Eq. S3 and Eq. S4, one obtains:  
 

𝐼1 =   
𝐼𝑚𝑎𝑥  𝑒𝑥𝑝 (

𝜅𝑉
𝑈𝑇

 )

𝑒𝑥𝑝 (
𝜅𝑉
𝑈𝑇

 ) + 𝑒𝑥𝑝 (
𝜅𝑉𝑡

𝑈𝑇
 )

  , 

 
and, 

(S6) 

 
 
 
 
 

(S7) 

 

 

 

 

 

(S8) 
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𝐼2 =   
𝐼𝑚𝑎𝑥  𝑒𝑥𝑝 (

𝜅𝑉𝑡

𝑈𝑇
 )

𝑒𝑥𝑝 (
𝜅𝑉
𝑈𝑇

 ) + 𝑒𝑥𝑝 (
𝜅𝑉𝑡

𝑈𝑇
 )

 . 

  
The output current 𝐼1 effectively takes a sigmoidal form since: 

 

𝐼1 = 𝐼𝑚𝑎𝑥

 𝑒𝑥𝑝 (
𝜅𝑉
𝑈𝑇

 )

 𝑒𝑥𝑝 (
𝜅𝑉
𝑈𝑇

 ) + 𝑒𝑥𝑝 (
𝜅𝑉𝑡

𝑈𝑇
 )

×
𝑒𝑥𝑝 (−

𝜅
𝑈𝑇

𝑉)

𝑒𝑥𝑝 (−
𝜅

𝑈𝑇
𝑉)

 , 

 

 

 

 

 

𝐼1

𝐼𝑚𝑎𝑥
=   

 1

 1 + 𝑒𝑥𝑝 (−
𝜅

𝑈𝑇
 (𝑉 − 𝑉𝑡))

 . 

 

This expression may be simplified by recalling the 𝑡𝑎𝑛ℎ function: 

 

         𝑡𝑎𝑛ℎ(𝑥) =
 𝑒𝑥𝑝(𝑥) − 𝑒𝑥𝑝(−𝑥)

𝑒𝑥𝑝(𝑥) + 𝑒𝑥𝑝(−𝑥)
 

 

   =
 𝑒𝑥𝑝(𝑥) (1 − 𝑒𝑥𝑝(−2𝑥))

𝑒𝑥𝑝(𝑥)(1 + 𝑒𝑥𝑝(−2𝑥))
 

 

            =
 1

1 + 𝑒𝑥𝑝(−2𝑥)
−

 𝑒𝑥𝑝(−2𝑥)

1 + 𝑒𝑥𝑝(−2𝑥)
  , 

 

and setting  𝑢 ≡ 2𝑥 ≡
𝜅

𝑈𝑇
 (𝑉 − 𝑉𝑡): 

 

 𝑡𝑎𝑛ℎ (
𝑢

2
) =

 1

1 + 𝑒𝑥𝑝(−𝑢)
−

 𝑒𝑥𝑝(−𝑢)

1 + 𝑒𝑥𝑝(−𝑢)
 

 

 

 (S9) 

 

 

 

 

 

 

 

 

 

 

 

(S10) 

 

 

 

 

 

(S11) 

  
Substituting Eq.S9 into S11 gives: 

 

      𝑡𝑎𝑛ℎ (
𝑢

2
) =

𝐼1

𝐼𝑚𝑎𝑥
−

 𝑒𝑥𝑝(−𝑢) + 1 − 1

1 + 𝑒𝑥𝑝(−𝑢)
 

 

           =
𝐼1

𝐼𝑚𝑎𝑥
− 1 −

−1

1 + 𝑒𝑥𝑝(−𝑢)
 

 

           =
𝐼1

𝐼𝑚𝑎𝑥
− 1 +

𝐼1

𝐼𝑚𝑎𝑥
 

 

  
𝐼1

𝐼𝑚𝑎𝑥
=

1

2
[1 + 𝑡𝑎𝑛ℎ (

𝑢

2
)] 
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𝐼1 =
𝐼𝑚𝑎𝑥

2
[1 + 𝑡𝑎𝑛ℎ 𝛽(𝑉 − 𝑉𝑡)] 

 

 

 

 

(S12) 

where we have set 𝛽 ≡
𝜅

2𝑈𝑇
.  Eq.S12 gives the sigmoidal dependence of (in)activation currents in VLSI 

circuits.  The activation slope 𝛽 is however a constant in VLSI design whereas it is a parameter in conductance 

models.  Analog interpolation synthesizes an adjustable slope 𝛽𝑚 so that the activation current in the SSN 

model is: 

      

𝐼𝑚 =
𝐼𝑚𝑎𝑥

2
[1 + 𝑡𝑎𝑛ℎ 𝛽𝑚(𝑉 − 𝑉𝑡𝑚)] 

 

 

 

(S13) 

B. Equations of the transconductance amplifier 

In Supplementary Figure 7, the current output of the TCA, 𝐼𝑜𝑢𝑡 = (𝐼1 − 𝐼2) is given by:   

 

𝐼1 − 𝐼2 = 𝐼𝑚𝑎𝑥   
𝑒𝑥𝑝 (

𝜅𝑉𝑡

𝑈𝑇
 ) − 𝑒𝑥𝑝 (

𝜅𝑉
𝑈𝑇

 )

 𝑒𝑥𝑝 (
𝜅𝑉𝑡

𝑈𝑇
 ) + 𝑒𝑥𝑝 (

𝜅𝑉
𝑈𝑇

 )
 

 

  𝐼1 − 𝐼2 = 𝐼𝑚𝑎𝑥   
𝑒𝑥𝑝 (

𝜅𝑉𝑡

𝑈𝑇
 ) − 𝑒𝑥𝑝 (

𝜅𝑉
𝑈𝑇

 )

 𝑒𝑥𝑝 (
𝜅𝑉𝑡

𝑈𝑇
 ) + 𝑒𝑥𝑝 (

𝜅𝑉
𝑈𝑇

 )
×

𝑒𝑥𝑝 (−
𝜅

2𝑈𝑇
(𝑉𝑡 + 𝑉))

𝑒𝑥𝑝 (−
𝜅

2𝑈𝑇
(𝑉𝑡 + 𝑉))

 

 

Hence the current output by the TCA is: 

 

 

𝐼𝑜𝑢𝑡 = 𝐼𝑚𝑎𝑥  𝑡𝑎𝑛ℎ [
𝜅

2𝑈𝑇
(𝑉𝑡 − 𝑉)] 

 

 

 

(S14) 

 

 

 

 

 

(S15) 

 

 

 

 

 

(S16) 

 

C. Equations of the leak current  

 

In Supplementary Figure 8, the leak current is given by: 

 

 

𝐼𝐿𝑒𝑎𝑘 = 𝐼𝑔𝑙 𝑡𝑎𝑛ℎ [
𝜅

2𝑈𝑇

(𝐸𝐿 − 𝑉)] 

 

 

(S17) 
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D. Equations of the after-hyperpolarization current (AHP) 
 

A circuit modelling the AHP current has been proposed by Rasche and Douglas (2000)1.  We give here the 

equations derived from this circuit which we used to construct SSN models incorporating the AHP current.  

Although we used the AHP current to analyse hippocampal and respiratory neurons, the AHP channel was 

found to have negligible conductance in the respiratory neuron.  In the hippocampal neuron, the M-current 

always produced better fits of the membrane voltage than the AHP current (see Fig.5 and Supplementary 

Figure 4).  Hence the AHP channel could be omitted from Table III. 

In Supplementary Figure 5, an action potential (𝑉 > 𝑉𝑃𝑡ℎ) increases the intracellular calcium concentration 

by triggering an influx of calcium ions into the soma (ICain).  This concentration then decays slowly due to 

calcium buffering. The intracellular calcium concentration is modelled by gate variable 𝑉𝑐 which has first 

order dynamics given by: 

𝐶𝑐
𝑑𝑉𝑐

𝑑𝑡
= 𝐼𝜏𝑐 𝑡𝑎𝑛ℎ[ 𝛽(𝑉𝑐𝑎𝑟𝑒𝑠𝑡 − 𝑉𝑐)] + 𝐼𝑐𝑎𝑖𝑛 𝜃[𝑉 − 𝑉𝑃𝑇𝐻]           (S18) 

Above a threshold concentration (𝑉𝑐 > 𝑉𝑡𝑐) the calcium ions activate the following influx of potassium ions: 

𝐼𝐴𝐻𝑃 = 𝐼𝑔𝑐 𝑡𝑎𝑛ℎ[𝛽(𝑉𝑐 − 𝑉𝑡𝑐)]𝜃[𝑉𝑐 − 𝑉𝑡𝑐]          (S19) 

Where 𝜃(𝑥) is the Heaviside step function. 
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